The quantum computing era is coming, and it will change everything about how the world connects online. While quantum computing will yield tremendous benefits, it will also create new risks, so it’s essential that we prepare our critical internet infrastructure for what’s to come. That’s why we’re so pleased to share our latest efforts in this area, including technology that we’re making available as an open source implementation to help internet operators worldwide prepare.
(more…)Verisign Will Help Strengthen Security with DNSSEC Algorithm Update
As part of Verisign’s ongoing effort to make global internet infrastructure more secure, stable, and resilient, we will soon make an important technology update to how we protect the top-level domains (TLDs) we operate. The vast majority of internet users won’t notice any difference, but the update will support enhanced security for several Verisign-operated TLDs and pave the way for broader adoption and the next era of Domain Name System (DNS) security measures.
(more…)Next Steps in Preparing for Post-Quantum DNSSEC
In 2021, we discussed a potential future shift from established public-key algorithms to so-called “post-quantum” algorithms, which may help protect sensitive information after the advent of quantum computers. We also shared some of our initial research on how to apply these algorithms to the Domain Name System Security Extensions, or DNSSEC. In the time since that blog post, we’ve continued to explore ways to address the potential operational impact of post-quantum algorithms on DNSSEC, while also closely tracking industry research and advances in this area.
(more…)Verisign’s Role in Securing the DNS Through Key Signing Ceremonies
Every few months, an important ceremony takes place. It’s not splashed all over the news, and it’s not attended by global dignitaries. It goes unnoticed by many, but its effects are felt across the globe. This ceremony helps make the internet more secure for billions of people.
(more…)Ongoing Community Work to Mitigate Domain Name System Security Threats
For over a decade, the Internet Corporation for Assigned Names and Numbers (ICANN) and its multi-stakeholder community have engaged in an extended dialogue on the topic of DNS abuse, and the need to define, measure and mitigate DNS-related security threats. With increasing global reliance on the internet and DNS for communication, connectivity and commerce, the members of this community have important parts to play in identifying, reporting and mitigating illegal or harmful behavior, within their respective roles and capabilities.
(more…)Industry Insights: Verisign, ICANN and Industry Partners Collaborate to Combat Botnets
Note: This article originally appeared in Verisign’s Q1 2021 Domain Name Industry Brief.
This article expands on observations of a botnet traffic group at various levels of the Domain Name System (DNS) hierarchy, presented at DNS-OARC 35.
Addressing DNS abuse and maintaining a healthy DNS ecosystem are important components of Verisign’s commitment to being a responsible steward of the internet. We continuously engage with the Internet Corporation for Assigned Names and Numbers (ICANN) and other industry partners to help ensure the secure, stable and resilient operation of the DNS.
(more…)Information Protection for the Domain Name System: Encryption and Minimization
This is the final in a multi-part series on cryptography and the Domain Name System (DNS).
In previous posts in this series, I’ve discussed a number of applications of cryptography to the DNS, many of them related to the Domain Name System Security Extensions (DNSSEC).
In this final blog post, I’ll turn attention to another application that may appear at first to be the most natural, though as it turns out, may not always be the most necessary: DNS encryption. (I’ve also written about DNS encryption as well as minimization in a separate post on DNS information protection.)
(more…)Securing the DNS in a Post-Quantum World: Hash-Based Signatures and Synthesized Zone Signing Keys
This is the fifth in a multi-part series on cryptography and the Domain Name System (DNS).
In my last article, I described efforts underway to standardize new cryptographic algorithms that are designed to be less vulnerable to potential future advances in quantum computing. I also reviewed operational challenges to be considered when adding new algorithms to the DNS Security Extensions (DNSSEC).
In this post, I’ll look at hash-based signatures, a family of post-quantum algorithms that could be a good match for DNSSEC from the perspective of infrastructure stability.
(more…)Securing the DNS in a Post-Quantum World: New DNSSEC Algorithms on the Horizon
This is the fourth in a multi-part series on cryptography and the Domain Name System (DNS).
One of the “key” questions cryptographers have been asking for the past decade or more is what to do about the potential future development of a large-scale quantum computer.
(more…)Newer Cryptographic Advances for the Domain Name System: NSEC5 and Tokenized Queries
This is the third in a multi-part blog series on cryptography and the Domain Name System (DNS).
In my last post, I looked at what happens when a DNS query renders a “negative” response – i.e., when a domain name doesn’t exist. I then examined two cryptographic approaches to handling negative responses: NSEC and NSEC3. In this post, I will examine a third approach, NSEC5, and a related concept that protects client information, tokenized queries.
(more…)